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Multiple-synostosis syndrome is an autosomal dominant disorder characterized by progressive symphalangism,
carpal/tarsal fusions, deafness, and mild facial dysmorphism. Heterozygosity for functional null mutations in the
NOGGIN gene has been shown to be responsible for the disorder. However, in a cohort of six probands with
multiple-synostosis syndrome, only one was found to be heterozygous for a NOGGIN mutation (W205X). Linkage
studies involving the four-generation family of one of the mutation-negative patients excluded the NOGGIN locus,
providing genetic evidence of locus heterogeneity. In this family, polymorphic markers flanking the GDF5 locus
were found to cosegregate with the disease, and sequence analysis demonstrated that affected individuals in the
family were heterozygous for a novel missense mutation that predicts an R438L substitution in the GDF5 protein.
Unlike mutations that lead to haploinsufficiency for GDF5 and produce brachydactyly C, the protein encoded by
the multiple-synostosis–syndrome allele was secreted as a mature GDF5 dimer. These data establish locus heter-
ogeneity in multiple-synostosis syndrome and demonstrate that the disorder can result from mutations in either
the NOGGIN or the GDF5 gene.
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Multiple-synostosis syndrome (SYNS1 [MIM 186500])
is an autosomal dominant condition characterized by
progressive joint fusions of the fingers, wrists, ankles,
and cervical spine; characteristic facies; and progressive
conductive deafness. Two additional syndromes have
very similar phenotypes: proximal symphalangism
(SYM1 [MIM 185800]) and tarsal-carpal coalition syn-
drome (TCC [MIM 186570]). Heterozygosity for NOG-
GIN (GenBank accession number NM_005450) muta-
tions has been identified in all three disorders (Gong et
al. 1999; Dixon et al. 2001). In addition, heterozygosity
for mutations in NOGGIN has been identified in stapes
ankylosis syndrome without symphalangism (MIM
184460) (Brown et al. 2002). To date, 14 distinct NOG-
GIN mutations have been reported (Gong et al. 1999;
Dixon et al. 2001; Takahashi et al. 2001; Brown et al.
2002; Mangino et al. 2002). The majority (10 of 14)
are missense mutations, and the 4 nonsense mutations
are predicted to result in premature translation termi-
nation codons. Noggin was initially identified in Xen-
opus as a secreted signal released by the Spemann or-

ganizer and is involved in developmental processes,
including induction of neural tissue from the ectoderm
and dorsalization of the ventral mesoderm (Zimmerman
et al. 1996). It also participates in the regulation of chon-
drogenesis in somites and limb buds, in which it acts as
an antagonist to the bone morphogenetic proteins (Zim-
merman et al. 1996; Brunet et al. 1998; McMahon et
al. 1998).

GDF5 (growth differentiation factor 5, also known as
CDMP1 or BMP14), a member of the bone morpho-
genetic protein and TGF-b families, is a secreted growth
factor expressed during several steps in skeletal devel-
opment, including the formation of the cartilage anlagen
(chondrogenesis), chondrocyte differentiation, and joint
morphogenesis (Chang et al. 1994; Storm and Kingsley
1999). Several skeletal dysplasias are known to result
from mutations in GDF5 (GenBank accession number
NM_000557). Brachydactyly C (BDC [MIM 113100]),
a disorder characterized by shortened middle phalanges
of the second, third, and fifth digits and by hyperphal-
angia, results from heterozygosity for functional null
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Figure 1 A, Pedigree of family R02-328 with SYNS1. B, Chromatograms showing the GDF5 wild-type (WT) sequence and the nucleotide
substitution, 1313GrT, predicted to lead to the amino acid substitution R438L.

GDF5 mutations (Polinkovsky et al. 1997). Recently, in
the disorder brachydactyly A2 (BDA2 [MIM 112600]),
heterozygosity for a GDF5 mutation (L441P) within the
active-signaling domain of the molecule was identified
(Kjaer et al. 2005). Homozygosity for functional null
mutations in GDF5 have been identified in autosomal
recessive Hunter-Thompson (MIM 201250), Grebe
(MIM 200700), and Du Pan (MIM 228900) chondro-
dysplasias, as well as in a rare form of BDC in the bra-
chypodism mouse (Storm et al. 1994; Thomas et al.
1996, 1997; Faiyaz-Ul-Haque et al. 2002; Schwabe et
al. 2004). Individuals with these disorders have severe
abnormalities in the bones and joints of the mesomelic
and acromelic limb segments. Interestingly, carriers of
the mutations of the recessive forms of GDF5 disorders
manifest mild abnormal metacarpohalangeal profiles,
which suggests gene-dose sensitivity in the developing
phalanges (Schwabe et al. 2004).

After obtaining institutional approval for human sub-
jects study, we studied a cohort of six genetically inde-
pendent individuals with SYNS1 diagnosed on the basis
of clinical and radiographic evaluations. Five cases oc-
curred sporadically, and one individual was a member
of a large four-generation Ashkenazi Jewish family (fig.
1A). In this family, phenotypic findings included a broad
hemicyclindrical nose, progressive symphalangism, and
carpal, tarsal, and vertebral fusions. Within this family,
there was phenotypic variability in the extent of joint

fusions and in the presence or absence of equinovarus.
To test the hypothesis that heterozygosity for NOGGIN
mutations would lead to SYNS1 in this cohort, we de-
termined the sequence of the single exon encoding nog-
gin, using published methods (Gong et al. 1999). One
patient (R02-360) was heterozygous for a point muta-
tion (1425GrA) predicted to lead to a premature trans-
lation termination codon, W205X (human NOGGIN).
This mutation created an Afe1 restriction endonuclease
cleavage site, and the mutation was further confirmed
by cleavage of a PCR-generated DNA fragment with the
enzyme (data not shown). No mutations were identified
in the remaining five probands. For two of the patients,
normal dosage of the NOGGIN gene was demonstrated
by Southern analysis (data not shown).

To confirm the exclusion of NOGGIN as the disease
gene in the familial case of SYNS1, linkage analysis using
polymorphic markers from chromosome 17q21-22 was
performed. The data demonstrated exclusion of linkage
between the phenotype and the markers D17S787 (max-
imum LOD score of 0 [ ]) and D17S957 (maximumv p 0
LOD score of 1.0 [ ]), which flank the NOGGINv p 0
gene, thus excluding NOGGIN as the disease gene. To
define the second locus for SYNS1, we considered other
genes known to be involved in joint morphogenesis, in-
cluding the gene encoding GDF5, which is a direct an-
tagonist of noggin. We tested linkage to the marker
D20S195, which is located 2.2 Mb centromeric to
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Figure 2 Synthesis and secretion of normal and mutant GDF5 proteins. DF-1 cells transfected were control vector, human GDF5, chicken
(ch) GDF5, ch R438C-GDF5, and ch R438L-GDF5. A, Ponceau red-stained western blot demonstrating protein expression and uniform loading
in samples derived from the cell lysate and supernatant. B, Western blot analysis of lysate from ch GDF5 transfected cells showing pro-GDF5
in the human control lane and mature GDF5 in wild-type ch GDF5 and in ch R438L-GDF5 but not in ch R438C-GDF5 (top); western blot
analysis of supernatant from ch GDF5–transfected cells showing pro-GDF5 in the human control lane and mature GDF5 in wild-type ch GDF5
and in ch R438L-GDF5 but not in ch R438C-GDF5 (bottom).

GDF5. In the family, a single allele cosegregated with
disease without exception (maximum LOD score of 2.2
[ ]). Since these data supported the candidacy ofv p 0
the GDF5 gene, the sequences of the two exons of GDF5
were determined as described elsewhere (Polinkovsky
et al. 1997) for the five NOGGIN mutation–negative
probands. Heterozygosity for a nucleotide substitution
(1313GrT) (human GDF5) was found in the proband—
the index case from the large family—predicting an
R438L amino acid change in the protein (fig. 1B). The
sequence change was found in all affected members of
the family but not in the unaffected individuals, and it
is predicted to substitute a hydrophilic arginine with a
hydrophobic leucine in a highly conserved residue within
the active-signaling domain of the mature protein. How-
ever, in four probands, neither a NOGGIN mutation
nor a GDF5 mutation was identified, which suggests
that other possible loci could lead to SYNS1.

To determine the consequences of the substitution on
dimerization and secretion of GDF5, we used an RCAS
viral construct (Lehmann et al. 2003) to transiently
transfect and express a chicken GDF5 cDNA carrying
the R438L sequence in DF-1 cells. The data were com-
pared with control constructs carrying either the wild-
type sequence or a cDNA with an R438C mutation,
which causes BDC (Everman et al. 2002). The BDC mu-

tation is known to lead to inefficient dimerization and
secretion of the mature protein, which leads to func-
tional haploinsufficiency for GDF5 (Everman et al.
2002). Proteins secreted into the medium and within the
infected cells were each separated by PAGE under non-
reducing conditions, were transferred to membranes,
and were incubated with a monoclonal antibody to the
aminoterminal portion of GDF5 (kind gift from Bio-
pharm GmbH). The antibody recognizes the disulfide-
linked full dimer (pro-GDF5) and the mature, active-
domain dimer (GDF5) (Wang et al. 2004). The R438L
protein was assembled into mature GDF5 dimers and
was secreted in a similar way as wild-type GDF5 (fig.
2B). In contrast, but consistent with prior studies (Ev-
erman et al. 2002), the R438C construct did not lead
to efficient formation or secretion of either pro-GDF5
or mature GDF5 dimers. Thus, although the same amino
acid residue is altered in both BDC and SYNS1, the
different substitutions lead to distinct fates for the mu-
tant protein. It is likely that altered GDF5 activity due
to the R438L substitution, rather than due to haploin-
sufficiency, produces SYNS1, revealing an alternative
pathway to disease resulting from a GDF5 mutation
(Seeman et al. 2005)

To date, all reported mutations causing SYNS1 have
been heterozygous NOGGIN mutations (Marcelino et
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al. 2001). This report identifies GDF5 as a second locus
for the SYNS1 phenotype. A role for GDF5 in joint
formation is further supported by the report of a large
family with features similar to SYNS1, described in ab-
stract form only (Akarsu et al. 1999). In the family, an
S475N substitution, also in the highly conserved active-
signaling domain of GDF5, was found to segregate with
the phenotype. The effects of the substitution on the
protein are unknown.

One of the questions raised by the identification of a
second locus for SYNS1 is whether there are phenotypic
differences between the individuals in whom NOGGIN
versus GDF5 mutations have been identified. Detailed
review of the phenotypes of the individuals in the family
described here show characteristic clinical and radio-
graphic findings for the disorder, including a broad hem-
icyclindrical nose, progressive symphalangism, and car-
pal, tarsal, and vertebral fusions. Analysis of hand
radiographs of affected individuals showed no findings
characteristic of BDC, indicating that the substitution
does not result in an overlapping SYNS1/BDC pheno-
type. Detailed evaluation of this family did not reveal
any distinguishing clinical features between SYNS1 pa-
tients with NOGGIN mutations and patients with
GDF5 defects.

NOGGIN and GDF5 are both required for proper
joint morphogenesis. In the absence of noggin, BMP
growth factors are unregulated, resulting in chondrocyte
hyperplasia instead of apoptosis in the developing joint
and, thus, leading to lack of normal joint formation.
Noggin�/� mice had a lethal skeletal phenotype with a
very abnormal skeleton, characterized by joint fusions
with a complete absence of limb joints, costovertebral
defects, and cartilage spurs, and with up-regulation of
GDF5 in the areas of the presumptive joints (Brunet et
al. 1998). Human NOGGIN mutations that lead to
SYNS1 are due to functional haploinsufficiency and a
presumed lack of appropriate antagonism of GDF5.
Since the GDF5 R438L protein is able to form mature
secreted dimers, we suggest the hypothesis that the mu-
tation leads to increased GDF5 activity and to SYNS1
(Seeman et al. 2005). This is mechanistically similar to
the consequences of haploinsufficiency for NOGGIN,
in that the resultant effect is the up-regulation of GDF5
in the mesenchyme surrounding the developing joint.
This study identifies GDF5 as a locus for SYNS1. In
addition, mutations were not identified in either NOG-
GIN or GDF5 in the remaining four patients in the
cohort, suggesting the possibility of further locus
heterogeneity.
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GenBank, http://www.ncbi.nlm.nih.gov/Genbank/ (for NOGGIN [ac-
cession number NM_005450] and GDF5 [accession number
NM_000557])

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm
.nih.gov/Omim/ (for SYNS1, SYM1, TCC, stapes ankylosis syn-
drome without symphalangism, BDC, BDA2, and Hunter-Thomp-
son, Grebe, and Du Pan chondrodysplasias)

References
Akarsu AN, Rezaie T, Demirtas M, Farhud DD III, Sarfarazi M (1999)

Multiple synostosis type 2 (SYNS2) maps to 20q11.2 and caused
by a missense mutation in the growth/differentiation factor 5
(GDF5). Am J Hum Genet Suppl 65:A281

Brown DJ, Kim TB, Petty EM, Downs CA, Martin DM, Strouse PJ,
Moroi SE, Milunsky JM, Lesperance MM (2002) Autosomal dom-
inant stapes ankylosis with broad thumbs and toes, hyperopia, and
skeletal anomalies is caused by heterozygous nonsense and frame-
shift mutations in NOG, the gene encoding noggin. Am J Hum
Genet 71:618–624

Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin,
cartilage morphogenesis, and joint formation in the mammalian
skeleton. Science 280:1455–1457

Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ,
Kozak CA, Reddi AH, Moos M Jr (1994) Cartilage-derived mor-
phogenetic proteins: new members of the transforming growth fac-
tor-beta superfamily predominantly expressed in long bones during
human embryonic development. J Biol Chem 269:28227–28234

Dixon ME, Armstrong P, Stevens DB, Bamshad M (2001) Identical
mutations in NOG can cause either tarsal/carpal coalition syndrome
or proximal symphalangism. Genet Med 3:349–353

Everman DB, Bartels CF, Yang Y, Yanamandra N, Goodman FR, Men-
doza-Londono JR, Savarirayan R, White SM, Graham JM Jr, Gale
RP, Svarch E, Newman WG, Kleckers AR, Francomano CA, Gov-
indaiah V, Singh L, Morrison S, Thomas JT, Warman ML (2002)
The mutational spectrum of brachydactyly type C. Am J Med Genet
112:291–296

Faiyaz-Ul-Haque M, Ahmad W, Wahab A, Haque S, Azim AC, Zaidi
SH, Teebi AS, Ahmad M, Cohn DH, Siddique T, Tsui LC (2002)
Frameshift mutation in the cartilage-derived morphogenetic protein
1 (CDMP1) gene and severe acromesomelic chondrodysplasia re-
sembling Grebe-type chondrodysplasia. Am J Med Genet 111:31–
37

Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji
R, Hudgins L, Cremers CW, Cremers FPM, Brunner HG, Reinker
K, Rimoin DL, Cohn DH, Goodman FR, Reardon W, Patton M,
Francomano CA, Warman ML (1999) Heterozygous mutations in
the gene encoding noggin affect human joint morphogenesis. Nat
Genet 21:302–304

Kjaer KW, Eiberg H, Hansen L, van der Hagen CB, Rosendahl K,
Tommerup N, Mundlos S (2005) A mutation in the receptor binding
site of GDF5 causes Mohr-Wriedt brachydactyly type A2. J Med
Genet (http://jmg.bmjjournals.com/cgi/content/full/43/2/111) (elec-
tronically published Jul 13, 2005; accessed February 23, 2006)

Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K,



712 The American Journal of Human Genetics Volume 78 April 2006 www.ajhg.org

Majewski F, Tinschert S, Grzeschik KH, Muller D, Knaus P, Nurn-
berg P, Mundlos S (2003) Mutations in morphogenetic protein re-
ceptor 1B cause brachydactyly type A2. Proc Natl Acad Sci USA
100:12277–12282

Mangino M, Flex E, Digilio MC, Giannotti A, Dallapiccola B (2002)
Identification of a novel NOG gene mutation (P35S) in an Italian
family with symphalangism. Hum Mutat 19:308

Marcelino J, Sciortino CM, Romero MF, Ulatowski LM, Ballock RT,
Economides AN, Eimon PM, Harland RM, Warman ML (2001)
Human disease-causing NOG missense mutations: effects on noggin
secretion, dimer formation, and bone morphogenetic protein bind-
ing. Proc Nat Acad Sci USA 98:11353–11358

McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM,
McMahon AP (1998) Noggin-mediated antagonism of BMP sig-
naling is required for growth and patterning of the neural tube and
somite. Genes Dev 12:1438–1452

Polinkovsky A, Robin NH, Thomas JT, Irons M, Lynn A, Goodman
FR, Reardon W, Kant SG, Brunner HG, van der Burgt I, Chitayat
D, McGaughran J, Donnai D, Luyten FP, Warman ML (1997) Mu-
tations in CDMP1 cause autosomal dominant brachydactyly type
C. Nat Genet 17:18–19

Schwabe GC, Turkmen S, Leschik G, Palanduz S, Stover B, Goecke
TO, Mundlos S (2004) Brachydactyly type C caused by a homo-
zygous missense mutation in the prodomain of CDMP1. Am J Med
Genet A 124:356–363

Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Daw-
son K, Stricker S, Pohl J, Ploger F, Staub E, Nickel J, Sebald W,

Knaus P, Mundlos S (2005) Activating and deactivating mutations
in the receptor interaction site of GDF5 cause symphalangism or
brachydactyly type A2. J Clin Invest 115:2373–2381

Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee
SJ (1994) Limb alterations in brachypodism mice due to mutations
in a new member of the TGF beta-superfamily. Nature 368:639–
643

Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint
formation during digit development. Dev Biol 209:11–27

Takahashi T, Takahashi I, Komatsu M, Sawaishi Y, Higashi K, Nish-
imura G, Saito H, Takada G (2001) Mutations of the NOG gene
in individuals with proximal symphalangism and multiple synostosis
syndrome. Clin Genet 60:447–451

Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T,
Tsipouras P, Luyten FP (1997) Disruption of human limb morpho-
genesis by a dominant negative mutation in CDMP1. Nat Genet 17:
58–64

Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten
FP (1996) A human chondrodysplasia due to a mutation in a TGF-
beta superfamily member. Nat Genet 12:315–317

Wang W, Gu W, Wang Q, Piao Z, Piao YJ (2004) Cloning of integral
mature peptide gene of human GDF-5. J Huazhong Univ Sci Tech-
nolog Med Sci 24:212–213

Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spe-
mann organizer signal noggin binds and inactivates bone morpho-
genetic protein 4. Cell 86:599–606


	GDF5 Is a Second Locus for Multiple-Synostosis Syndrome
	Acknowledgments
	References


